

Short Answer Questions

Please answer all questions

1. a) What's the state space of a classical bit? (1 mark)
- b) What's the state space of a qubit? (1 mark)
- c) How many classical bits can be stored in a qubit? Briefly justify your answer (3 marks).

2. a) What is a pure state? (1 mark)
- b) What is the purity of a state? (1 mark)
- c) Are the following states pure or mixed?
 - (i) $\rho = \frac{1}{2}(\mathbb{I} + \sigma_x)$
 - (ii) $\rho = \begin{pmatrix} 1/2 & 1/4 \\ 1/4 & 1/2 \end{pmatrix}$
 - (iii) $\rho = \frac{1}{4}|\Phi_+\rangle\langle\Phi_+| + \frac{1}{4}|\Phi_-\rangle\langle\Phi_-| + \frac{3}{4}|00\rangle\langle00| - \frac{1}{4}|11\rangle\langle11|$
(3 marks)

3. a) Argue geometrically that any pure state has a Bloch vector of norm 1 and hence can be written as $|\psi\rangle\langle\psi|$?
(3 marks)
- b) What is the effect of evolving the state $\rho = 3/4|+\rangle\langle+| + 1/4|-\rangle\langle-|$ for $t = \pi/4$ under $H = \sigma_y$? State the final state and sketch this evolution on the Bloch sphere.
(4 marks)

4. a) What is meant by the purification of a state ρ ? (2 mark)
- b) State a purification for the state $\rho = 1/4|0\rangle\langle0| + 1/2|-\rangle\langle-| + 1/4|1\rangle\langle1|$ using 3 qubits. (1 mark)
- c) How could you purify ρ using only 2 qubits? (4 marks)

5. What is a POVM? How does it differ from a Hermitian measurement? (6 marks)

6. Use the unitary invariance of the Schatten p-norms and the triangle inequality to show that
$$\|U^N - V^N\|_p \leq N\|U - V\|_p.$$

(6 marks)

7. a) Define the vectorisation of an operator X . (1 mark)
- b) Show that $M \otimes \mathbb{I}|\Omega\rangle = \mathbb{I} \otimes M^T|\Omega\rangle$ where $|\Omega\rangle$ is the unnormalized maximally entangled state $\sum_i |ii\rangle$. (3 marks)
- c) Hence show that $\text{Tr}(AB) = \langle\Omega|A \otimes B^T|\Omega\rangle$ (3 marks)

8. a) Carefully state the free operations of the resource theory of entanglement. (6 marks)
- b) What are the free states corresponding to these free operations? (1 mark)

Long Answer Questions

Please pick 2 questions to answer

Question A - Quantum Channels

Consider the depolarising channel

$$\mathcal{E}(\rho) = p \frac{\mathbb{I}}{d} + (1-p)\rho. \quad (1)$$

- a) Show that $\text{Tr}[\mathcal{E}(\rho)^2] \leq \text{Tr}[\rho^2]$. (2 marks)
- b) Sketch/describe the action of \mathcal{E} for a single qubit on the Bloch sphere. (3 marks)
- c) State what is meant by the Kraus form of a quantum channel. (2 marks)
- d) Find a set of Kraus operators to represent the action of \mathcal{E} for a single qubit state. (7 marks)
- e) What Kraus operators (non-normalised is fine) could be used to represent \mathcal{E} for an arbitrary dimensional system? (2 marks)

Consider instead the single qubit quantum operation

$$\mathcal{E}(\rho) = q\text{Tr}[\rho] \frac{\mathbb{I}}{2} + p\rho + (1-q-p)\rho^T \quad (2)$$

- f) Is this a genuine quantum channel? Be precise! (9 marks)

Question B - Entropy

a) Use Jensen's inequality to show that the classical relative entropy $S(P||Q)$ is always non-negative. (5 marks)

For any doubly stochastic matrix P , concave function f and probability distribution \mathbf{p}

$$\sum_j P_{ij} f(p_j) \leq f \left(\sum_j P_{ij} p_j \right). \quad (3)$$

b) Use this to show that the quantum relative entropy $S(\rho||\sigma)$ is always non-negative. (9 marks).

c) *Hence* prove that the Von Neumann entropy is subadditive

$$S(\rho) \leq S(\rho_A) + S(\rho_B). \quad (4)$$

(4 marks)

d) The collision of two previously uncorrelated particles A and B can be modelled as

$$\rho_A \otimes \rho_B \rightarrow U(\rho_A \otimes \rho_B)U^\dagger. \quad (5)$$

What is the effect of the collision on the entropy of i. the joint system and ii. the separate particles A and B ?

(3 marks)

e) What about if we performed the same analysis running the process backwards? Is this mysterious? (4 marks)

Question C - Entanglement Catalysts

a) State Nielsen's Majorization Theorem. (1 marks)

b) Show that any probability distribution is majorized by the distribution $p(x) = 1$ for $x = x_0$ and $p(x) = 0$ for $x \neq x_0$. (2 marks)

c) What does this imply about the states that can be deterministically transformed to or from the product state of two pure states $|\psi\rangle_A \otimes |\phi\rangle_B$ via LOCC? (2 marks)

d) Prove that if $\mathbf{a} \prec \mathbf{c}$ and $\mathbf{b} \prec \mathbf{d}$ then $\mathbf{a} \otimes \mathbf{b} \prec \mathbf{c} \otimes \mathbf{d}$.

(Hint - there are other ways of doing this but you could start by showing $\mathbf{a} \otimes \mathbf{b} \prec \mathbf{c} \otimes \mathbf{d}$.)

(5 marks)

e) Interpret this mathematical result physically in terms of LOCC on pure bipartite quantum systems. (1 marks)

f) Show that

$$|\psi\rangle = \sqrt{\frac{2}{5}}(|00\rangle + |11\rangle) + \sqrt{\frac{1}{10}}(|22\rangle + |33\rangle) \quad (6)$$

cannot be transformed deterministically to

$$|\phi\rangle = \sqrt{\frac{1}{2}}|00\rangle + \frac{1}{2}(|11\rangle + |22\rangle) \quad (7)$$

via LOCC, but $|\psi\rangle \otimes |\chi\rangle$ can be transformed to $|\phi\rangle \otimes |\chi\rangle$ where

$$|\chi\rangle = \sqrt{\frac{3}{5}}|00\rangle + \sqrt{\frac{2}{5}}|11\rangle. \quad (8)$$

(4 marks)

g) Why is $|\chi\rangle$ sometimes called an entanglement catalyst? (1 marks)

e) In the limit of large n how many copies of $|\phi\rangle$ can be generated from $|\psi\rangle$ probabilistically using LOCC? That is, find the value m such that $|\psi\rangle^{\otimes n} \rightarrow |\phi\rangle^{\otimes m}$ via LOCC (with high probability). For concreteness take $n = 10^6$. (4 marks)

f) Describe (at a high level) a protocol that could be used to implement this probabilistic transformation. (5 marks)

Question D - Shot Noise

We are interested in computing the expectation value of the Hamiltonian H of the transverse field Ising model for two spins

$$H = J (Z \otimes Z) + g (X \otimes \mathbb{1} + \mathbb{1} \otimes X), \quad (9)$$

where J and g are constants (interaction and field strength respectively). The spectrum of this Hamiltonian is given by $\lambda(H) = \{\pm J, \pm \sqrt{J^2 + 4g^2}\}$.

Assume that we are able to create product states i.e. $|\Psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle$ where $|\psi_i\rangle = \frac{1}{2}(\mathbb{I} + \mathbf{r}^{(i)} \cdot \boldsymbol{\sigma})$ for $(i = 1, 2)$ can be any single qubit pure state.

- a) Use Chebyshev's bound to deduce as a function of $g, J, \mathbf{r}^{(1)}$ and $\mathbf{r}^{(2)}$ the number of shots required to estimate H up to a precision ϵ with probability at least $1 - \delta$. (9 marks)
- b) Repeat the same calculation this time using Hoeffding's Inequality. (5 marks)

We next want to determine which product states experience the minimal shot noise.

- c) First argue why we can reduce our optimization domain to a circle on the Bloch sphere instead of the entire Bloch sphere. (1 mark)
- d) Considering the limit $g \ll J$ show that you can even restrict your optimization domain to a single axis of the Bloch sphere i.e. to just two pure states. What are these states? (1 mark)
- e) Show that the variance of your estimator in this case is given by $2g^2/N$. (5 marks)
- f) Now suppose that you are able to create entangled states. Compute the effect of shot noise for the Bell state $|\phi_-\rangle$. (4 marks)